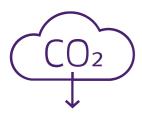


Deep Arctic Upgrade

Diving Into The Future: Battery Hybrid DSV

Andrew Manson, OneFleet


50 by 30 Overview

50 by 30 Emissions Reduction

One Fleet Focus

- Targeting 50% reduction in Scope 1 & 2 emissions by 2030:
 - Absolute emissions, versus 2017 baseline
 - OneFleet accounts for up to 70% of Group emissions
- Two fundamental pillars for One Fleet emissions reduction:

Energy Efficiency

Reduce energy consumption by operational & technology advancement:

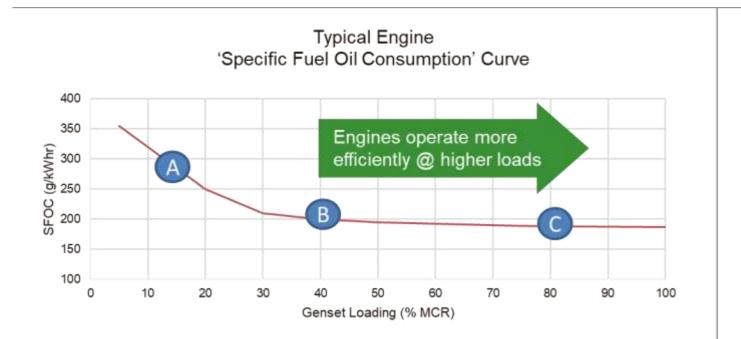
- Use of digital platforms to provide better operational insight and energy consumption awareness
- Active SEEMP management, to reduce consumption
- Hybrid power plants / energy storage solutions, to enable safer, and more efficient vessel operations
- Fleet renewal, replacing ageing assets with inherently more efficient tonnage

Alternative Fuels

Introduce alternative fuels with lower carbon intensity:

- Today Renewable Diesels, produced from sustainable feedstocks, waste products and biomass, offering greatest C02 reduction factors
- Tomorrow Outlook beyond 2030, potential shift to alternative, power-to-X fuels, produced from renewable energy sources

Deep Arctic Upgrades


Energy Efficiency

50 by 30

Generating Energy Onboard

Problem Statement:

- The DP Critical Activity Modes for a Saturation Diving Vessel, demand high levels of redundancy for power generation;
 meaning sufficient spinning reserve, to ensure the safest mode of operation
 - Multiple generating sets online running at relatively low load
 - Increased fuel consumption & emissions, running hours & maintenance
 - Driving up the cost and environmental impact of operations

Generator Setup on DP:

Typical DP setup:

- 4 Generators online ~ 15 20% Load
- Max Operational Redundancy

Ideal DP setup:

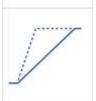
- 2 Generators online ~ 30 40% Load
- Min Operational Redundancy

Most Energy Efficient Setup:

- 1 Generator online ~ 60 80% load
- Zero Redundancy!

Energy Efficiency

50 by 30


Benefits of Energy Storage

Hybrid Power Solution:

Battery arrays have been demonstrated to provide the following benefits

Power Backup:

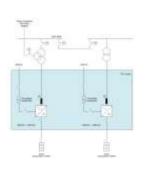
 Short-time backup to running generators, replacing engine spinning reserve, whilst satisfying operational redundancy requirements

Peak Shaving & Enhanced Dynamic Performance

Providing level power on engines, offsetting the need to start new engines, as well as instant power in support of running engines; safer and more dynamic response during normal operations

Zero Emission Operations

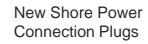
 Inclusion of shore power connections, allows unrestricted project mobilization activities to be carried out with zero emissions, where port "cold ironing" infrastructure is available


Main Upgrades Overview

SIEMENS

Modification to vessels systems, firefighting, lighting, alarms, CCTV, etc. within new battery rooms

> Modifications to PMS, IAS and DP



Installation of new hybrid equipment below main deck, batteries, drives, transformers, distribution boards, HV boards

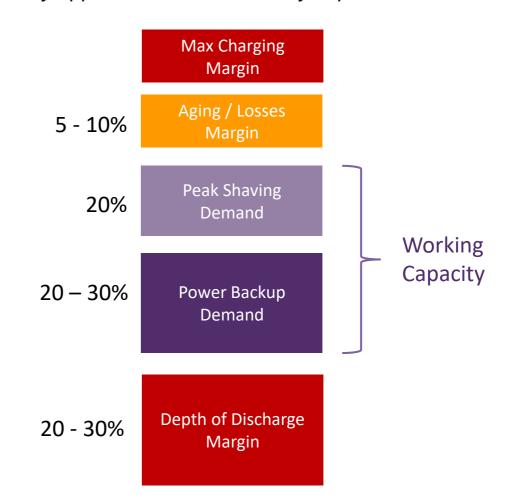
New Cooling & **HVAC Systems**





Onboard Upgrades Complete March 2021

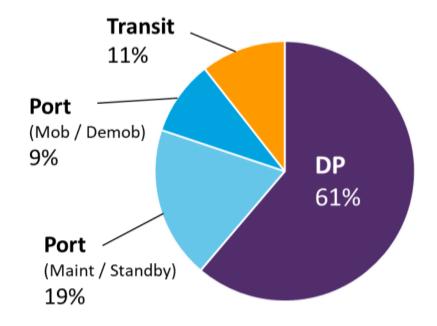
Energy Storage System

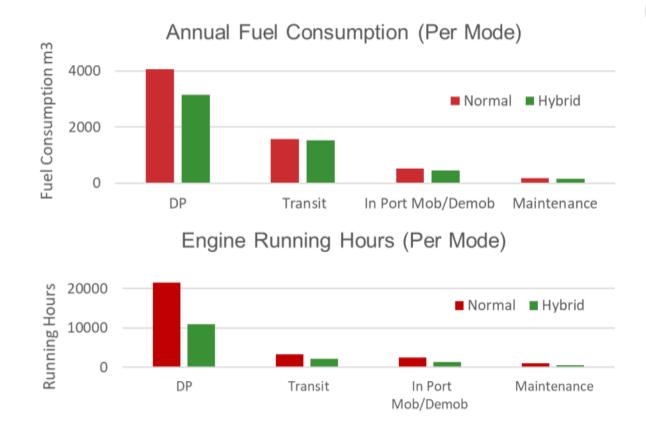

Energy Storage System Overview:

- 2 x 420kWh Battery arrays
 - Each array has 7 x 60kWh cubicles
 - Each Cubicle 9 x 6.6kWh Battery Modules
- SOC Usable Range 20 70%
- Peak Shaving Allowance 20%
- Max Discharge Power 1,240kW (duration 300sec)

Typical Battery Design Margins:

• Only approx. 50% of the battery capacities are usable!




50 by 30

Estimated Benefits

Operational Profile 2017-2020:

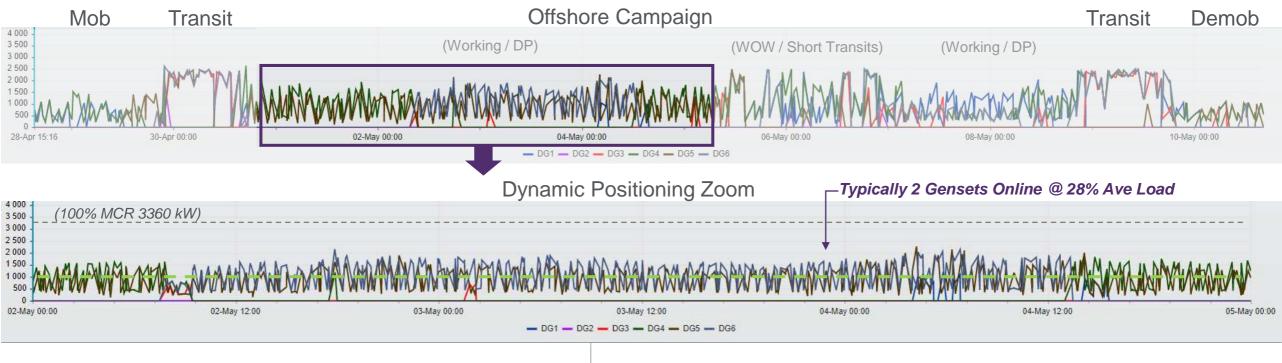
- Major proportion of time in DP / offshore, when the largest savings can be made
- Relative savings per mode:
 - DP 22%, Port 15%, Transit 3%

Annual Average Reductions

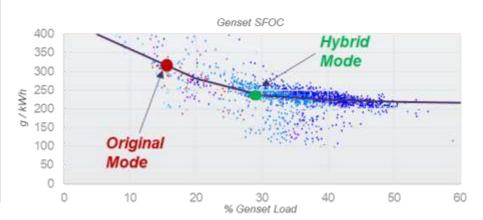
Up to 20% reduction in Fuel Consumption & Emissions:

MGO ~ 1,300
$$m^3$$
 CO2 ~ 3,500 Te NOx ~ 57 Te

Over 50% reduction in engine running hours & maintenance



Actual Savings


Kognifai Remote Monitoring

Overview of example project campaign, intended to demonstrate approximate fuel savings resulting from Battery Hybrid power plant, when working in DP

Hybrid	Original
2	4
28% (960kW)	14% (480kW)
15 m ³ / day	18-19 m ³ / day
	2 28% (960kW)

Estimated
Savings of
~25% in DP

